Tameness and extending frames

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tameness and Extending Frames

We combine two notions in AECs, tameness and good λ-frames, and show that they together give a very well-behaved nonforking notion in all cardinalities. This helps to fill a longstanding gap in classification theory of tame AECs and increases the applicability of frames. Along the way, we prove a complete stability transfer theorem and uniqueness of limit models in these AECs.

متن کامل

Tameness and Frames Revisited

We study the problem of extending an abstract independence notion for types of singletons (what Shelah calls a good frame) to longer types. Working in the framework of tame abstract elementary classes, we show that good frames can always be extended to types of independent sequences. As an application, we show that tameness and a good frame imply Shelah’s notion of dimension is well-behaved, co...

متن کامل

Tameness from Two Successive Good Frames

We show, assuming a mild set-theoretic hypothesis, that if an abstract elementary class (AEC) has a superstable-like forking notion for models of cardinality λ and a superstable-like forking notion for models of cardinality λ+, then orbital types over models of cardinality λ+ are determined by their restrictions to submodels of cardinality λ. By a superstable-like forking notion, we mean here a...

متن کامل

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Categoricity, Amalgamation, and Tameness

Theorem. For each 2 ≤ k < ω there is an Lω1,ω-sentence φk such that: (1) φk is categorical in μ if μ ≤ אk−2; (2) φk is not אk−2-Galois stable; (3) φk is not categorical in any μ with μ > אk−2; (4) φk has the disjoint amalgamation property; (5) For k > 2, (a) φk is (א0,אk−3)-tame; indeed, syntactic first-order types determine Galois types over models of cardinality at most אk−3; (b) φk is אm-Gal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Logic

سال: 2014

ISSN: 0219-0613,1793-6691

DOI: 10.1142/s021906131450007x